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DISTRIBUTION PROPERTIES OF 
MULTIPLY-WITH-CARRY RANDOM NUMBER GENERATORS 

RAYMOND COUTURE AND PIERRE L'ECUYER 

ABSTRACT. We study the multiply-with-carry family of generators proposed 
by Marsaglia as a generalization of previous add-with-carry families. We de- 
fine for them an infinite state space and focus our attention on the (finite) 
subset of recurrent states. This subset will, in turn, split into possibly several 
subgenerators. We discuss the uniformity of the d-dimensional distribution of 
the output of these subgenerators over their full period. In order to improve 
this uniformity for higher dimensions, we propose a method for finding good 
parameters in terms of the spectral test. Our results are stated in a general 
context and are applied to a related complementary multiply-with-carry family 
of generators. 

1. INTRODUCTION 

Marsaglia and Zaman introduced in [7] the add-with-carry (AWC) and subtract- 
with-borrow (SWB) families of uniform random number generators which combine 
both efficiency and very long period. They are all subsumed under the following 
scheme. We define a recursive carry generator of order r and base b (a positive 
integer) by means of a function 

f :E *Z 

where Z C Zr+l is the set of a = (x-1,... , x, c) satisfying 0 < xi < b. This 
set E is the state space of the generator. We refer to c as the carry component of 
the state a. The state a E E evolves according to the transformation T: E - E 
defined by T(x1,.. ., xr, c) = (x'1,.. .X' r,C/), where 
(1) x'i = xi+X for i <-1, 

(2) X + c'b = f(x,..., xr, c). 

The integers xl 1 and c' are uniquely determined from (2) since we must have 
O < X/ 1 < b, and therefore xl 1 is the least nonnegative residue of f (x- 1, . . . X Xr X c) 
modulo b. From each state (X-I, ... , X_, c) a uniform pseudorandom number is 
obtained by using x_I/b E [0,1). As an example, if one takes 

f(x1 ,.. ,X_-rC) = Xs +x_Xr +C 
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where s is an integer with 0 < s < r, one obtains an AWC generator. 
The set Erec of recurrent states-those for which T (u) = a for some positive 

integer n deserves special attention. In case of the AWC above, we know that any 
state a uE E will evolve into Erec ,in no more than r + 1 steps, so that we may as 
well assume a E Erec. Now the carry component of any recurrent state is either 0 
or 1, and this allows to bypass the costly Euclidean division implied in (2), since 
we then have, if x-s + X-r + C > b, 

X/ =X-s+X-r+c-b, c'/= 1, 

while, if x-s + X-r + C < b, 

X_1 = XsX + X_r + c) c =0. 
There is another circumstance that will allow efficient calculation (on a binary 

computer) of xl 1 and c'. This is when the base b is equal to 2W, a power of 2. The 
binary representation of xl 1 and c' are then obtained, respectively, as the w least 
significant bits and the remaining more significant bits of the right-hand side of (2), 
when this is positive. Using this device, and taking 

(3) f(x_1, .. , Xx_rc) = a1x_1 + + arx-r + c, 

for suitably chosen fixed non-negative integers al, Marsaglia [6], calls the carry 
generator thus defined, a multiply-with-carry (MWC) generator. In this case, the 
carry component of a recurrent state is non-negative. One may also allow the 
coefficients al to be negative. When none of them are positive, we call the defined 
generator a complementary multiply-with-carry generator. The carry component c 
of a recurrent state is now negative. The recurrence (2) can then be written, in 
terms of the related non-negative quantities c = -c- and c' =-c'-1, 

(4) (b - 1) - l1 ? c'b = (-ai)xi, + * * * + (-ar)x-r + C, 
and we may recover (b - 1) - x 1 and c' from the right-hand side, as in the case of 
a MWC. We shall see that, for the complementary MWC, each bit of the output 
value is fair, that is, the two binary digits will appear equally often in a full period, 
a property not shared by MWC generators. 

In this paper, we study the d-dimensional uniformity of the output of MWC 
and complementary MWC generators. To be more specific, we note that the set 
Erec of recurrent states will split, in general, into a certain number of T-invariant 
subsets, the T-orbits, over which the action of T is transitive. Each of these orbits 
defines a different random number generator, which we may refer to as a minimal 
subgenerator. Given one such orbit, and a positive integer d, we enquire about the 
number of states a belonging to this orbit, and such that its output d-tuple, that 
is, the d-tuple of output values corresponding to (0, T(a),... , Td-I(u)), is equal 
to a given arbitrary d-tuple in the unit hypercube [0, i)d. Marsaglia [6] obtained 
one such result in the special case of AWC/SWB generators. It states that almost 
every r-tuple of numbers of the form y/b, with y an integer satisfying 0 < y < b, 
will appear exactly once as an output r-tuple in a full period. The method of proof 
is to show that some orbit in Erec has its period close to the cardinality of Erec, 
and the result follows from a characterization of recurrent states which implies that 
almost every r-tuple in {, ... , b - I}r figures as the first r components of a single 
recurrent state. This property of admitting a large-period orbit was, incidentally, 
the original motivation for the introduction of a carry component. The lagged- 
Fibonacci and more generally the multiple recursive generators have, in case of a 
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power of two modulus, a maximal period much smaller than the cardinality of the 
set of recurrent states. 

In Section 2, we give a characterization of the recurrent states, and show that 
any state in E will quickly evolve into Erec, A close connection is also established 
between the recurrent states and a certain linear congruential generator (LCG). 
This connection was investigated in [11] and [1], again in the AWC/SWB case. We 
then distinguish two aspects of the question of d-dimensional uniformity, requiring 
different methods. These are discussed in Sections 3 and 4 respectively. We see in 
Section 3 that the problem leads to some arithmetical questions. In Section 4, we 
make use of the well-known spectral test. We examine in this respect some specific 
instances proposed in [6]. We also indicate a method of search for parameters 
which are good according to this test. The spectral test had been used in [11] and 
[1], to obtain distribution properties of the AWC/SWB generators for dimensions 
d > r. A preliminary version of this paper (without the proofs) was presented at 
the 1995 Winter Simulation Conference. For general references on random number 
generation, the reader can consult, e.g., [3, 4, 9]. 

2. ORBIT STRUCTURE 

In this section, we deal with recursive carry generators defined by functions f 
of the form (3). We do not assume the coefficients al to be positive, but only that 
m = -1 + a1b + . ?+ arbr + 0. This m may thus also be negative. In order to 
avoid trivial special cases we assume that at least one coefficient al is not 0. It is 
convenient to introduce a coefficient ao equal to -1. The base b can be an arbitrary 
positive integer. We will examine, for such generators, the orbit structure in the 
state space E, under the action of the transformation T. This is done by embedding 
a certain LCG into the carry generator. 

Put Zm = { k E Z 0 ? < k/m < 1}, and define the transformation S: Zm -* Zm 
by S(k) = k' where k' E Zm is subject to bk' -k (mod m). This transformation S 
is well defined and invertible, since b is prime to m. We first construct a one-to-one 
mapping t: Zm -> E such that, identifying corresponding elements, S is identified 
with T (see Theorem 1 for a precise statement). 

For k E ZmI we define 
-1 r 

(5) 7y(k) = E Lalyi-lb2, 
i=-oo 1=0 

(6) t(k) = (Y-1, y-rIy(k)). 

where Y-I, Y-2,... are the digits in the b-adic expansion of k/m (note that these 
digits are uniquely determined by k/m since b is prime to m), so that k/m = 

E =_oo yib2, and therefore 
r-1 r 

(7) k=Z alyiSlb' +-y(k) 
i=O l=i+l 

It follows from (7) that -y(k) E Z, and we have thus obtained a mapping t: Zm * E. 

Theorem 1. The mapping t: Zm -> E, given by (5) and (6), is uniquely deter- 
mined by its following two properties. 

(i) For k E Zm, we have t(S(k)) = T(t(k)). 
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(ii) If k E Zm, then xi1/b < k/m < x1/b+ l/b, where x-1 is the first component 
of t(k). 

Proof. It is a simple verification that t, given by (5) and (6), satisfies (i) and (ii). 
Consider now any mapping t: Zm E E satisfying these two properties. Take any 
k C Zm, and let k/rn =Z,-1_. yib" be its b-adic expansion. We will show that t(k) 
is given by (5) and (6). For any non-negative integer n, we have the b-adic expansion 

S-n(k)/m = _o y_ b. By (1) and property (i), the jth component of t(k), 
for 1 < j < r, is equal to the first component of L(S-3+1(k)), and is therefore equal 
to y-j by property (ii). Thus the first r components of t(k) are given by the first r 
digits in the b-adic expansion of k/m. Apply this to S-n (k) for n equal to -i-I and 
-i, with i a negative integer. We then find, denoting by cn the carry component 
of t(S-n(k)), and using (2) with property (i), that ci1 = (Z>' alyijj + c-i)b-1 
and, by a recursive substitution, that co = 1__to I=0 alyilb2. O 

Property (ii) of the theorem is extended as follows. 

Corollary 1. For k C Zm and any positive integer n, the nth digit in the b-adic 
expansion of k/m is equal to the first component of t(S-n+1 (k)). 

Proof. Let k/m = E?-1QO yb be the b-adic expansion of k/m. We then have 

S-n+l(k)/m - Z-l yi_n1b2 and Y- is the first component of L(S-n+l(k)) 
by property (ii) of Theorem 1. F 

As with Erec, the set Zm is decomposed, by means of the transformation S, 
into a set of orbits, which we may call S-orbits. By Theorem 1 (i), each S-orbit is 
mapped by , onto a T-orbit. For d, a positive integer, and for any integer y satisfying 
0 < y < bd, we denote by I(d) the interval { x E R I y/bd < x/m < (y + 1)/bd}. 

Corollary 2. Let K C Zm be an S-orbit, and t(K) its corresponding T-orbit. Let 
d be any positive integer, and let Y-1, . . . , Y-d be given integers in {o, . lb - 1}. 
Put Y = d yibd+i. Then the number of states a E t(K) with output d-tuple 

(Y-d/b, ., yi1/b), is equal to the cardinality of K n 4(d) 

Proof. By Corollary 1, for k E K, and any positive integer n, the nth digit in the 
b-adic expansion of Sd-l(k)/m is equal to the first component of L(Sd-n(k)) = 

Td-n(t(k)). Thus the set of k E K such that Sd-l(k) E I(d) is in a one-to-one 
correspondence, by t, with the set of states t(k), k E K, with given output d-tuple 
(y-d/b,... ,y_/b). On the other hand, the former set is mapped one-to-one onto 
K I(d) by Sd-i. 

The question of the distribution of the output d-tuples of the minimal subgen- 
erator associated with the T-orbit t(K) is thus reduced to the question of the 
distribution of the S-orbits K in Zm, into intervals of length Iml/bd. It now 
arises whether every T-orbit in Erec is of the form t(K) for some S-orbit K. This 
turns out to be true with one exception, namely for the trivial orbit {?1i} where 
(;I= (b-, ... ., b- 1i, ao + + ar) is one of the only two states fixed by T, the 
other being so = (0, ... , 0) = t (0). It is a consequence of the fact that the set of 
recurrent states Erec is equal to t(Zm) U {?i }, which we now proceed to demonstrate. 
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First, introducing the mapping p: E -* Z, defined by 
r-1 r 

p(x_1,. * X_,r, C) = E aixi-lb' + c, 
i=O l=i+l 

we can rewrite (7) as 

(8) k = p(t(k)), k E Zm. 

We also note that property (ii) of Theorem 1 can be generalized to 

(9) bp(T(u)) = p(u) + x' lm, 

where xi 1 is the first component of T(u). 
Next, we define 8: E 

-+ 
R by 

-1 r+i 
6(u) = c-E E aixi-lb2, 

i=-r 1=0 

where u = (x_,. ... ,X_r,C) E E, so that 
-1 

(10) m E xib2 = p(u) - 6(u). 
i=-r 

We further have, writing a' = (x'1,... ., ,X c') = T(a), 

(11) b 8(a') = 8(u) + mx-rb-r. 

Note that, in general, for u = (x-1... ,X-r,C) E E, the integer k = p(u) may 
well not be contained in Zm. However, it results from (10) that, taking 8(u)/m 
non-negative and sufficiently small, one can arrange that this be the case, that the 
xi's be the first r-digits in the b-adic expansion of k/m, and that -y(k) be close to c. 
The function 6 is thus indicative as to the extent to which a given state falls short 
of being recurrent (see the next theorem for a precise statement). 

Theorem 2. (i) A state u E E belongs to t (Zm) if and only if 

(12) 0 < 8(u)/m < 1/br. 

(ii) A state u E E is equal to so if and only if 8(u) = 0. 
(iii) For any state u E , we have TnT(u) E t (Zm)U {i} if the non-negative integer 

n satisfies 

(13) n > max(0,log94(u)0 -logbImI + r) + max(r,logbimM) ? 1. 

(iv) A state u E E satisfies TnT(u) E {so, ?i} for some non-negative integer n, if 
and only if p(u) 0_ (mod m). 

For h E R, we denote by Eh the set of states u E E for which 8(u)/m < h/br. 
We put Z' = Z1\Zo. This is precisely the set of states u for which (12) holds. 
We will say that the two states u = (x_i,.. .,X_r,C) and -a = (x . c) 
are equivalent, in symbols u - a, when xi = xi, i = -1,...,-r. In the proof of 
Theorem 2, we make use of the following facts. 

Lemma 1. (i) If u and -a E E satisfy u f & and T(u) T(U-), we then have 
(c' - c-')b = c - c-, where c, c-, c' and c' are the respective carry components of 
u, a, T(u) and T(Q). 

(ii) The set Eh is T-invariant if h > 1. The complementary set Z' is T-invariant 
if h < 0. In particular, Z' is T-invariant. 
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(iii) p(EZ) C Zm. 
(iv) If a E Z', then a -t(p(u)). 
(v) If u E Z', then T(t(p(u))) = t(p(T(u)). 

(vi) If u E E has carry component c and satisfies u - ?o, then 8(u) = c, while if 
u S1.-', then 8(u) = c- (ao + + ar) + mb-r. 

(vii) For u E Z and n, a positive integer with n > logb16(u)l -logbImI + r, we have 
TnT(u) E Z2\\-1. 

(viii) Let u E Z2\E1 (resp. Z' 1\Z). If u $ S1 (resp. so), then Tr(u) E Z', while 
if a si (resp. so), then either u = si (resp. so), or there exists a positive 
integer n such that TT(u) $ S1 (resp. ?o), and n < logbm I - r + 1. 

Proof. Statement (i) follows from the recurrence formulas for T, (1) and (2), and 
from (3). Using (11) we obtain 

(14) 1 6(u) < 6(T(u)) 1 8(u) 1 1 
b m m b m br br+l' 

so that, if h > 1 and u E Eh, then 8(T(u))/m < (1 + (h - l)/b)/br < h/br, and 
T(u) E Eh while, if h < 0 and u E E', then 8(T(u))/m > h/bHr+ > h/br and 
T(u) E E'. This proves statement (ii). Let u (xI,... I ,X_r,C) E Z'. By (10), 
0 < p(u)/m < 1, so that p(u) E Zm, and x1,. . . ,X-r are the first r digits of the 
b-adic expansion of p(u)/m. This gives statement (iii) and, using the definition of 
t, statement (iv). If u E Z' then, by (ii), we also have T(u) E Z' and therefore, by 
(iii), p(u) and p(T(u)) E Zm. Statement (v) then follows from (9) and Theorem 
1 (i). Statement (vi) is a straightforward calculation from the definition of 8. If 
u E E and n is a positive integer then, by repeated application of (14), we have 

1 8(u) < 6(Tn(u7))< 1 8(u) +1 1 

bn m - m -bn m br br+n' 

so that, if 18(u)/ml < b n-, then -1/br < 8(T n(u))/M < 2/br, and statement (vii) 
follows. Finally, we prove statement (viii). Assume first that u = (x-,. . ., x-r, c) E 

Z2\Z1l If u i S1, then xi < b - 2 for some value io of the index i so that by (11), 
Tr+io+1(() E Z' and therefore, Tr(u) E Z'. If u s ?1 then, by our hypothesis, we 
have I/br < 8(u)/rm < 2/br or, using (vi), 

(15) 0 < c-(ao+..?+ar) 

For any positive integer n, denote by cn the carry component of T n(u) and assume 
that TT(u) ?1 for 0 < n < logbjj- r + 1. Let n' be the integral part of 
logbimj - r + 1. By repeated application of (i), we obtain from (15) 

I Cn/ -(ao + ***+ ar )I < Ir+' 

The left-hand side, being a non-negative integer, must be equal to 0 since the right- 
hand side does not exceed 1. Another appeal to (i) leads to c = ao + . ?+ ar, 
and therefore u = a . Assume now that u = (x1,. .. ,X r,C) E c Z \c. This 
case is symmetrical to the previous one, and we use the same notations. If a 7 s0, 

then xi > 1 for some value io of the index i so that by (11), Tr+i0+l (a) E Z and 
therefore, Tr(u) E Z/. If u s-,o then, by our hypothesis, we have 

1 <6(u) <O 
br - m 
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or, using (vi), 

(16) < - <0 

Assume that TT(u) -o for 0 < n < logbITjl - r + 1. By repeated application of 
(i), we obtain from (16) 

C',I< 
rnj 

lCn br < +nl 

We conclude as in the preceding case that c = 0. O 

Proof of Theorem 2. Assume that a = (X-1,. . . , xr, c) = t(k) for k E Zm. Let 
Y-1, Y-2, *- be the digits in the b-adic expansion of k/m. It then follows from the 
definition of t that xi = yi for i =-1,...,-r. But, from (10) and (8), we have 

#ZT=1r xib" = k/m - 8(u)/m so that 8(u)/m = jrl y6b, and (12) follows. We 
thus have shown that t (Zm) C Z' and we now prove the converse inclusion. For this, 
we show that, if a E E', then the conclusion of Lemma 1 (iv) can be strenghtened 
to a = t(p(u)). For any non-negative integer n, put on = TT(u), an = T 
and denote by cn and cn their respective carry components. By Lemma 1 (ii) and 
(v), we have o7n E Z' and an = t(P(Un)) so that, by Lemma 1 (iv), Un v- an. This 
implies, using Lemma 1 (i), that 

(17) (Cn+l-C-n+l)b = Cn -En n > 0. 

Since cn - Cn is an integer, it must therefore be equal to zero if n is sufficiently 
large. But then (17) implies that it is zero for all n > 0, and we obtain a = t(p(a)). 
We have thus shown that t(Zm) = El. This is statement (i). 

Clearly 6(?o) = 0. Conversely, if a state a = (x_1,. ...,x_r,C) E S satisfies 
8(u) = 0 then, by (10), we must have xi = 0, i = -,... ,-1, since b is prime to m. 
Therefore c = 8(u) = 0, and a = so. This proves statement (ii). 

Consider any state a = (x1, ... , xr, c) E 5, and a non-negative integer n 
satisfying (13). There then exist two non-negative integers ni and n2 satisfying 
n = ni +n2, ni ? log 19(a)l -logbmI +?r, and n2 > max(r,logblml). By Lemma 1 
(vii), Tn1 (CT) E 2\E-1, and by Lemma 1 (viii), either Tn1 (u) = q, or TT(u) E E'. 
Combined with statement (i), this proves statement (iii). 

It follows from (9) that, for any state a E 5, p(u) 0 O (mod m) if and only if 
p(T(o-)) 0 O (mod m). We obtain statement (iv) from this and statement (i), since 
,o and Si are the only states in t (Zm) U {s} mapped by p on an integer multiple 
of m. D 

Theorem 1 (i) implies that t(Zm) c Erec, and we now obtain from Theorem 
2(iii) that Erec = t(Zm) U {Li} It follows that any non-trivial T-orbit in Erec is 

of the form t(K) for some S-orbit K in Zm. We are now in a position to apply 
Corollary 2. The simplest case arises when m is prime, and b is a primitive root 
modulo m, so that K = Zm\{0 }. Let d be a positive integer and let Y-i, , Y-d 
be given integers in {0, ... , b - 1}. Let ii be the largest integer smaller than ml/bd. 
It then follows from Corollary 2, that the number of those states in t(K) for which 
the output d-tuple is equal to (y-d/b, . . , yi /b), is either ii or v + 1. Let No and 
N1 be the number of such d-tuples for which this is v, and v + 1 respectively. Then 
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we have No + Ni = bd, and vNo + (v + 1)N1 = m - 1, from which we obtain 

(18) No=(v + 1)bd_mr+1, 

(19) N =,m -vb d _1. 

For instance, in case of an AWC meeting the above conditions on m and b, we have 
m = -1 + bS + b' where the integer s satisfies 0 < s < r. We obtain, for s < d < r, 
v = b , No = bd bs + 2, N1 = bS - 2, and for 0 < d < s, v = brd + bs 
No = 2, N1 = bd - 2. 

As a consequence of the characterization (12) in Theorem 2, if Iml > br, then 
there exists a state (x_1,... , x_, c) E t(Zm), for any choice of (x_1,..., xr) E 

{ o,... , b - i}r. It is possible, in this case, given the coefficients a1,.. ar, to 
determine the smallest interval containing the carry component of all states in 
t(Zm). For j =-1, ... , -r, put mj = ZO<1<-i albl and, for x E R, write x+ = 

max(x, 0), x = -min(x, 0). 

Corollary 3. The carry component c of any state in t(Zm) satisfies 

-1 
-- 

(20) -(b-1) , bi (mj) <- < (b-1) E bi m ) + r 
j=-r j=-r 

These inequalities are best possible when {ml > br. If al > 0, 1 = 1, ... , r, they 
amount to 

r 

(21) 0 < c < Zal, 
1=1 

while if al<0,=1,...,r, to 

r 

(22) Ea, < c < 0. 
1=1 

In the latter case, the carry c is equal to 0 only when xi = 0 for i = -r, .. ,-1. 

Proof. The inequalities (12) can be rewritten as 

-1 -1 

(23) E xjbJmj/m < c/m < E xjUbmj/m + 1/br, 
j=-r j=-r 

and the inequalities (20) follow by taking the minimum and the maximum, over 
all (x-1,... ,xr) E {O,...)b - 1}r, of the left bound and the right bound in 
(23) respectively. When [ml > br, there is always an integer c satisfying (23), 
and therefore the inequalities (20) are best possible. Assume now that al > 0, 
I = 1, ... , r. Let k be the smallest integer 1 such that a, > 0. Then (mjr/m)- 
(resp. (mj/m)+) is equal to 1/m (resp. 0) if -k < j < -1, and to 0 (resp. mj/m) 
if -r < j < -k. The lower bound in (20) is thus equal to (-1 + bk)/m, and the 
upper bound to (b - 1)/rn Z-r<j<-k b3nmj + 1/br = 1/m E=, al - 1/(mbr). Since 
c is an integer, these bounds are equivalent to the inequalities 0 < c < _11=1 a,. 
The case of non-positive coefficients al is similar. O 
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3. LARGE INTERVALS 

We will consider a case where application of Corollary 2 leads to the study of 
the distribution of the S-orbits in Zm, into large intervals. We assume that b = 2w 
for some positive integer w greater than 2. We also assume that m is prime, so that 
we may consider Zm\{O} as a group with respect to multiplication modulo m. Let 
Ko be the subgroup of Zm\{O} generated by b. A non-trivial S-orbit K C Zm is 
then given by any coset of Ko in Zm\{O}. Since the Legendre symbol 

(2) (1)(m2-1)/8 1, 

2 is always a quadratic residue, and we will assume that 2 generates the subgroup 
of quadratic residues. It follows that the number of non-trivial S-orbit K is equal 
to 2wo with w0 equal to the greatest common divisor of w and (Iml - 1)/2. 

We first consider the simplest case of m > 0, namely when w0 = 1. A non-trivial 
S-orbit K c Zm can now be either the set of all quadradic residues or of all non- 
quadratic residues in Zm\{?}. It suffices to consider the former case. Let d be a 
positive integer. Corollary 2 then leads us to the study of the distribution of the 
set of quadratic residues in the intervals 1(d) 0 < y < bd and, in particular, to the 
question of how many residues there are in the interval 

I = U I(d) = {x E R 0 < x/m < 1/2}. 
O<y<bd/2 

Let Dm denote the difference between the number of residues and non-residues in 
I. The number of non-residues in I is equal to the cardinality of K\I. Thus, Dm 
is equal to the difference between the number of times the most significant binary 
digit of the output value of the minimal subgenerator associated with K is equal 
to 0 and the number of times it is equal to 1, over the full period. This statement 
remains valid if we use the nth most significant digit, n < w, instead of the first. 
Indeed, the correspondence k i k', where k, k' E Zm satisfies 2nk' k (mod m), 
maps K one-to-one onto K, and the nth digit of the binary expansion of k/m, 
k E Zm, is nothing but the first digit of that of k'/m. If we expect this minimal 
subgenerator to be a uniform random number generator, the parameters al, and 
therefore m, should thus be chosen so as to make IDm as small as possible and, 
at any rate, not significantly larger than (Iml - 1)/2, the standard deviation of 
a sum of (Iml - 1)/2 independent Bernoulli trials, each equal to 1 or -1 with the 
same probability 1/2. 

As m will normally be very large, direct computation of Dm is not to be consid- 
ered. It may be of interest to see what can be obtained by means of Weyl's method. 
For any integer n, define x(n) to be the Legendre symbol (n/rn) if n is prime to m, 
and 0 otherwise. This function X is a Dirichlet character for the modulus m. This 
means it is multiplicative, that is X(niln2) = X(nl)X(n2) for any pair of integers 
ni, n22, it is equal to 0 precisely for integers not prime to m, and it is periodic with 

period m. We consider sums of the type 

(24) z (k)p ( ) 
kEZm 
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where p is a 27r-periodic function. This expression is equal to Dm if we take p = p0 
defined by 

1/2, 0 < t < 7r7 
Po (t)= O, t = 0,1r, 

-1/2, - 7r < t < 0. 

Weyl's method is based on the fact that we know the values of (24) for the functions 
p(t) = exp(int), n E Z. They are the well-known Gauss sums, and are equal, in 
this case, to iI mIX(n). Expanding po into a Fourier series, 

p(t) = S E l int 
n_1 (2) 

we find that (24), with p = po, is equal to 

(25) l E X (n) = rn (I X(2) EX(n) I En X(n) 
n-1 (2) n2n0 n=1 

since x(2) = 1, and X(-l) = -1. By the analytic class number formula of Dedekind 
(see ?51 of [2]), the right-hand side of (25), and therefore Dm, is nothing but the 
number hA of ideal classes of the imaginary quadratic field Q(\A) of discriminant 
A = -m. In particular Dm > 0, that is, there are always more residues than 
non-residues in I. In fact, it has been proved by Siegel [10] that, for any c > 0, 
there exists a constant C, such that hA > Ce Al//2-e for every discriminant A of 
an imaginary quadratic field. On the other hand, we have the inequality (see p. 
389 of [8]) hA < (17/) /A logJA I + (2/vr)(1 + log(2/vr)) AI. We therefore have 

1/2-c1 
2 ((lo2 Y2\ m- (26) CMil/2 6<Dm <K-mlogm+ -(+logj-))i. 

Since the right-hand side becomes large compared with i(m - 1)/2, when m is 
large, a more precise determination of Dm is still wanting. 

We now assume that m < 0, and that w is divisible by 4. We then have -1 E Ko, 
and it follows that for any non-trivial S-orbit K, K n I and K\I have the same 
cardinality. Thus, in this circumstance, all w output bits are fair. Again using 
Weyl's method, it is further possible to study the independence of contiguous output 
bits. We consider for instance the two most significant bits. Since these two bits 
are fair, the pairs 01 and 10, as well as the pairs 00 and 11, will appear equally 
often as the two most significant bits of the output values over the full period of 
each minimal subgenerator. Therefore, all pairs of binary digits will appear equally 
often if the pairs 00 and 01 do so. We may thus measure the independence of the 
two most significant bits by the difference between the number of times these two 
pairs, 00 and 01, appear in the full period. But the sum Dm of these differences 
corresponding to all S-orbits contained in the group of quadratic residues is equal 
to (24) with p = P1, where P1 is given by P1 (t) = po (t + 7r/2). In this case the Gauss 
sums are equal to inElX(n) and, expanding P1 into a Fourier series, 

11 (t = E (1)(n1)/2en Pi (t)=- n- e 
wr n 

n=_1 (2) 
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we find that Dm is equal to 

m 1 y X(n)(-l)(n-l)/2 v_ 4 ?m X'_(n) 
wr n wr n 

n--I (2) n=1 

where X' is that Dirichlet character for the modulus 4m, which is the product of X 
and the only nontrivial Dirichlet character for the modulus 4. Written in this form 
we recognize that Dm is the class number of the imaginary quadratic field Q( A) 
of discriminant A = 4m, and we obtain for it, bounds similar to (26). 

The above results and estimates are however too weak for the quantities Dm 
or Dm to be useful as effective uniformity criteria. For this, sufficiently precise 
approximations to them must be developed. 

4. SMALL INTERVALS 

When the dimension d is large enough so that the length Iml/bd of the intervals 
I(d) is smaller than 1, any d-tuple in the unit hypercube [ 0, i)d can appear at most 
once, in the full period of a minimal subgenerator, as an output d-tuple. It is 
sufficient in this case to locate in the unit cube those d-tuples that do appear. We 
will construct a lattice in Rd such that all output d-tuples are approximated by a 
lattice point. This lattice is then studied via the spectral test [3, 5]. 

We denote by e1, . . ., ed, the canonical basis in Rd. Put v* =/m Zd1 bd-iej 
and let Ad = ZV* +Zd be the lattice in Rd generated by v* and Zd. The intersection 
Ad n 0, 1)d is then precisely the set of d-tuples (k/m, S(k)/m, . ..,Sd-I(k)/m), 
k E Zm. 

By Theorem 17 the study of the distribution of the set of d-tuples of successive 
outputs of the carry generator, restricted to t(Zm), is by large reduced to the study 
of the lattice Ad. Let A(d) = {w E Rd w w Ad C Z} denote the lattice dual to Ad. 
If w E A(d)\{O} and n E Z, then the region {v E RdI n < v *w < n + 1} is the set 
of points between two parallel hyperplanes, apart by a distance of 1/1lwll, and it 
contains no point of Ad. We are thus concerned with the presence of small vectors 
in A(d) as they produce wide gaps in the distribution of points of Ad. 

Define al = 0 if 1 > r, and put w1 = (ZI>d1 albl-d+l )el 
+ 

EdZ 2 ad-jej, and 
w = -ej-, + bej for j = 2,.. ., d. These vectors belong to A(d) since they have 
integer coefficients, and since 

(27) v w1 = 1, v wj =0, j=2,...,d. 

Let H(d) C Rd be the subspace containing all vectors orthogonal to v*, and let A(d) H 
be the lattice generated in H(d) by the vectors wj, j = 2,.. ., d. 

Proposition 1. A lattice basis for A(d) is given by the set of vectors wj, j = 

1,..., d. We have A(d) nH(d) - A(d), and the vectors of mninimal length in A(d)\{0} 
are the vectors ?wj, j = 2,... , d. 

Proof. See [1], Propositions 1 and 4. 0 

The next theorem describes the set of shortest vectors of A(d)\{O}, for d 
1, . . ., r + 1, in an important special case, namely when 

1) all coefficients al, 1 1,..., r, are either non-negative or non-positive, the 
greater weight being given to the leading coefficient ar, 
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2) the carry component c of any recurrent state satisfies 0 < c < b, if all coef- 
ficients al, 1 1,..., r, are non-negative, or -b < c < 0 if they are non- 
positive. 

The first condition is to ensure that the density of points in Ad is large, as this den- 
sity is equal to the group theoretical index [Ad: Zd] = Iml. The second condition, 
which is equivalent, by Corollary 3, to the condition E= al b, derives from im- 
plementation considerations. In case b = 2', with w equal to the computer's word 
length, the first r components of a state can each be stored in one word. In case 
of non-negative coefficients, the condition guarantees that the carry component of 
any recurrent state can also be stored in one word, and that the corresponding sum 
(3) can be accumulated in a double-word register. A similar statement holds when 
the coefficients are non-positive. If c is the carry component of a recurrent state, 
then c can be stored in one word and the right-hand side of (4) can be stored in a 
double-word. 

Theorem 3. Assurne that b>6, that ar 0, 0<al/ar <, 1=1,...,r-1, and 
that lElr= a, < b. The vectors of minimal length in A(d) \{0} are then given by 

(i) ?wj, j = 2, ..., d, if d < r, or if d = r and IarI > 1, 
(ii) ?wj, j = 1, . . ., d, if d = r and Ia,I = 1, or if d = r + l and IarI = b, 

(iii) ?w1 if d = r + 1, and if IarI < b. 

Proof. Consider an arbitrary linear combination w = Ed zjWj with real coeffi- 

cients zj. We have V11 2 = m-2Ed b2(j-1) =m-2(b2d-1)/(b2_1) and, by (27), 
Zi = v w. Using the Cauchy-Schwarz inequality, we obtain 

1 (b2d i 1/2 
(28) |Zi m b2- / ll 

Assume that w E A(d)\{0} so that the coefficients zj are now integers, not all 0. 
Since all coefficients al, 1 = 1,. . . , r, are of the same sign (or 0), we have 

bd ~~1 
(29) - < 

arIbr-d-d m arbdbd 

and since b > 4, we have 

(30) 2lbd (b2 
- 

1)1/2 

Under either assumptions in (i) we have 2 < IarIbr-d and, combining this with 
(28), (29) and (30), we obtain 

(31) |z1l < f +lWl 
(b2 + 1)1/2 

We then obtain (i) from the last statement of Proposition 1 since, using (31), if 

wll < (b2 + 1)1/2, then z1 = 0, and therefore, w E A(d). 
Put e = ar/ arl. Under either assumptions in (ii), we have wi = Ebe1 - ed, and 

therefore, w =w' + w" with w' =ebze1 + b =2 zjej, and w" _=l zj+lej, 
where we take Zd+l to be equal to zl. We have llw'll = b(Zr=l Zj)1/2, and llw"l = 

(Zd=_ Z?)1/2. It follows that w > (b-1)(Z>i Z )1/2, and this exceeds .(b2+1)1/2 
for integer coefficients zi, unless at most one is not 0 and equal to ?1. This implies 
(ii). 
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Assume now that d = r + 1, that IarI < b, and that IIwII < IIw1 , with z1 > 0. 
We will see that this implies that w = w1. Our hypothesis implies that Iall < b, 

= 1, ... ,r, and EZ jai I < b so that Zila2 < b2. We thus have IIw1 12 < b2, 
and therefore 

(32) wllwl < b. 

It follows that we cannot have zi = 0 since we would then have w (d) \{0}, 
contradicting the last statement of Proposition 1. 

We first consider the case r > 1. Since b > 4, we have 

(33) b2(d+1) < (b + 1)2 (br - 1)2 (b2 - 1). 

Also, using (28), we have 

z 2a2(br_1)2 < z 2m2 < b2 W1 I12 

Combining this with (33) we obtain 

(34) zi2ar < (b+ 1)2 IIW 12 

and therefore, using (32), 

(35) 0 < zilarl < b. 

This implies that 

(36) 0<zllajl < b - 2, 1 < j <r, 

since IajI < Iar, and IajI + Iar, < b, for 1 < j < r. We next show that 

(37) -1 < ?Zj < 0, 2 < j <r, 

(38) 0 < Zr+l K 1. 

We have 

(39) ||w||2 =(zi ar- Z2)2 + (ziar-j+l + zjb - zj+i)2 + (zr+lb - 

j=2 

so that by (32), (zr+lb-Zi)2 < b2, and since 0 < z1 < b, we must have 0 < Zr+l < 2. 
Now Zr+1 cannot be equal to 2, unless z1 = b) Iar 1 by (35), and therefore 
a1 = 0, which would imply IIW 12 > (zrb - 2)2 + b2 > b2. This proves (38). For 
2 < j < r, we have, by (32) and (39), (ziar-j?+ +zjb-Zj+1)2 < b2 so that, by (36), 
-2 < Ezj+l < 1 implies that -2 < ezj < 1 and ezj =-2 implies that Ezj+l = -2. 
FIom this and (38) we obtain that -1 < zj < 1 for 2 < j < r. Using this and (39), 
we see that if Ezjo = 1 for some index jo with 2 < jo < r, then 

(Z_-1)2 + (b-1)2 + (b - Z1)2 < IIWI12 

if Zr?+ 1, while 

b2 +z 
2 

< IIWI12 

if Zr+l 0. But this is excluded by (32) since, in both cases, the left-hand side 
exceeds b2 as b > 6. We have thereby proved (37). For 1 < j < d, define qj as the 
square of the jth coordinate of w minus a +1-j, the square of the jth coordinate 
of wl. Let J be the set of indices j, for which qj < 0 and let J' be the set of 
those j E J for which ezj -1. Since qi > (z1 - I)a2 > 0, we have 1 C J. Also, 
qr+l > 0, and r + 1 ? J. Indeed, assuming otherwise qr+i < 0, this would imply 
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Zi = b, Zr+l = 1, and by (35), lar, = 1. But clearly then (32) cannot be satisfied. 
Thus, if we put 

Qi = qi + Eqj, 
jeJ' 

Q2 = E qj + qr+i, 
jGJ\J' 

we have IIWH12 _ JW1 112 > Ql + Q2, and by our assumption on w, we obtain that 

(40) Q1 + Q2 < O 

Denoting by #J' the cardinality of J', we now show that 

(41) #J' < z. 

If JI ; 0, and j E JI, then lzlar+1j - b - zj+l I < lar+l j I so that, by (37) and 
(38), we have (z1 + 1) ar+1-yj > b, and therefore, since Iar, > Iar+1-j 

(#J+I)b < larI+ Elar+l-1. zi +1 jCJ' 

As the right-hand side does not exceed b, we obtain (41), and therefore, since 

qji > -a2 

(42) Q 1 > (Z1zlr)a+r. 

Now, J\J' c {r} and, if r E J\J', then q, = (za, - Zr+i)2 -a1 <0, and we must 
have zl = Zr+l = 1, so that qr + qr+ = b2 2 2b-2ai+1 = (b-1)2-2ai > 0. 
Therefore, in any case, Q2 > 0 with equality holding only if J' = J. It follows 
from this, (40), and (42) that Qi = Q2 = 0, and therefore that z1 = 1, J = 0, and 
Zr?+ = 0. This proves that w1 = w. 

Finally, we deal with the remaining case r = 1, and d = 2. In this case, combining 
(28) with our assumption that w < IIw1 11 gives 

(b2 + 1)(a2 + 1) 
1 (alb -1)2 

Since a1 > 1, and b > 4, the right-hand side is less than 4, and we must therefore 
have z1 = 1. The inequality I wII < IIw, 1I can thus be written as 

(al - z2)2 + (Z2b - 1)2 < a 2 + 1, 

which clearly implies that 0 < Z2 < 1. If Z2 = 1, then the left-hand side is equal to 
a 2+ I + (b- 1)2-2a1, which clearly exceeds a 2 + 1 since b-1 > a, and b-I > 2. a+1 + 12- wic xed a-? 
Therefore we must have Z2 - 0, and w = wi. El 

Under the hypothesis of the previous theorem, we discuss short vectors of A(d) 
for d> r + 1. For d = r + 1, the squared length of w1 is equal to 1 + E1= a. Thus, 
a better (r + 1)-dimensional uniformity is obtained by choosing the coefficients 
al, 1 = 1,... , r, so as to maximize EI- alc, subject to the conditions that 0 K 

al/ar < b for 1 = 1,.. , r - 1, and I al < b. Clearly, these conditions imply 
that llw 12 = 1 + EIr=1 a2 < b2. Now, requiring good uniformity in still higher 
dimension imposes further constraints on the choice of the coefficients al. In fact, 
for d > r + 1, small vectors in A(d) may arise as follows. 
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With an arbitrary vector w = Ej= ZjW Rd associate the vector 

d 

W* ==zlwl+bEzjej. 
j=2 

We then have the following inequality 

Lemma 2. 

(43) llwll < (1 + b-l) ||w* || + |Zi1. 

Proof. We have w = w*-_>2 zjej, and b(Ed2 Z2)1/2 < zI I w, I I + I Iw*i. There- 
fore 

d 

w 11 < w I* || + (E Zj2)1/2 < (w + b- ) IIw* I + IwI ib- 1 l, 
j=2 

and since IIwi II < b, this proves the lemma. O 

Thus, if there exist integers z1, . . , Zd, not all zero, such that Iz1 I and IIw* I are 
small, we obtain a small non-zero vector w E A(d). This condition does not depend 
on the dimension d for d > r, and amounts to the existence of a small non-zero 
integer multiple zlw(r+l) of w(r+1) sufficiently close to a vector of the lattice bZr+l. 
We illustrate this using two sets of parameters proposed by Marsaglia [6]. Both 
have b = 216 and r = 8. In both cases, the choice of coefficients a, makes m and 
(m - 1)/2 prime, so that b generates the group of quadratic residues modulo m, 
and we thus have two non-trivial orbits. 

The first set of parameters is a1 = 1941, a2 = 1860, a3 = 1812, a4 = 1776, 
a5 = 1492, a6 = 1215, a7 = 1066, and a8 = 12013. The second is a1 = 1111, 
a2 = 2222, a3 = 3333, a4 = 4444, a5 = 5555, a6 = 6666, a7 = 7777, and a8 = 9272. 

In Table 1, we give the minimum squared length for a non-zero vector w E A 
for dimensions 8 < d < 15. 

TABLE 1. Squared length of shortest dual vector for Marsaglia's examples 

d First example Second example 

9 162 815 416 258 774 925 
10 162 815 416 7 917 146 
11 57 479 774 4 922 735 
12 13628741 1 248 822 
13 3545576 627603 
14 1 311482 591467 
15 589 430 441038 

We notice, in dimension d = r + 2 = 10, a minimal length vector smaller by a 
factor near 5 for the second case relative to the first case. This vector is given by 

Wmin = 177w1 - 25W2- 21w3 -18w4 -15w5- 12W6 - 9w7- 6w8. 
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Its length is approximately equal to 2813.74. The vector 177w1 happens to be of 
least distance to the lattice bZd among all vectors 

z1w1, 0 < lz1l < 2000, z1 E Z. 

This distance is approximately 2788.15, and this accounts, in view of the inequality 
(43), for the presence in the lattice A(d) of the small vector Wmin. 

It is easy to find coefficients al which satisfy the conditions in Theorem 3, and 
which make the distance of z1wl to bZd much larger than 2788.15 for a wider range 
of values of z1. For instance, we found that the choice a1 = 16, a2 = 20, a3 = 147, 
a4 = 1500, a5 = 2083, a6 = 5276, a7 = 10551, and a8 = 45539, gives a minimal 
distance to bZd approximately equal to 18163.47, for the set of vectors 

z1w1, 0 < Iz1 <3000, z1 E Z. 

We then found nearby coefficients which further satisfy the conditions that m is 
prime, and that b generates the group of quadratic residues. They are a1 = 14, 
a2 = 18, a3 = 144, a4 = 1499, a5 = 2083, a6 = 5273, a7 = 10550, and a8 = 45539. 
We give in Table 2 the minimum squared length for a non-zero vector w E A(d), for 
dimensions 8 < d < 15, for these coefficients. 

TABLE 2. Squared length of shortest dual vector for another example 

d The other example 

9 2219514697 
10 305 990 559 
11 92513087 
12 18472574 
13 4862652 
14 1 910 260 
15 705271 
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